
Model Driven Engineering

Individual Project:

Meta-Modeling for a Role-Playing Formalism in arKItect

Bojan Arnaudovski

University of Antwerpen, January 2014

Table of Contents

Abstract 2

Introduction 2

Abstract syntax 3

Concrete Syntax 5

Operational Semantics and Constraints 7

Comparison and Conclusion 14

References 15

2

Abstract

ArKItect is a domain-specific meta-modeling tool for designing and representing complex,

hierarchical systems. Aside from the meta-modeling feature, arKItect also provides a graphical

representation of the model representation and possibility of generating documents and reports such

as XML, HTML, Excel and Word. Two user types are supported in arKItect, the Developer (can only

modify the project data and its variants) and the Designer (can access meta-modeling, define rules,

filters, types and attributes). In this project I will use the arKItect Designer for making some parts of

the Role Playing Game. First, I will begin by defining the abstract and concrete syntax of RPG and

then do the operational semantics as similar as possible with those done with AtoMPM. Also a

detailed comparison between arKItect and AtoMPM will be provided.

Introduction

The main task of this project is to use the knowledge and experience that we’ve acquired by

working on the RPG in AtoMPM, to design the RPG in the tool arKItect. ArKItect is a DSM tool

that was developed by Samuel Boutin, Joe Matta and Konstantin Smolin from the French

software company Knowledge Inside in 2007. The first version of arKItect was release in 2007

and Renault and Cheuvreux were its first costumers. Since 2008, the number of costumers grew

from year to year which made arKItect a crucial software tool for every system

engineer/architect.

In the first section of this report, I will discuss the abstract syntax of the RPG. As we remember

from defining the abstract syntax in AtoMPM where we use the Class Diagrams as a main entity

representation, in arKItect it is a bit different. ArKItect doesn’t support Class Diagram

representation so in this case, I define arKItect objects and make them appear (visual and

operational representation) as close as they can with the Class Diagrams in AtoMPM. Also

instead of the Associations in AtoMPM, arKItect uses Flows to represent the connection between

the objects.

In the second section, I will give an overview of the concrete syntax of the RPG. Also for this

part, arKitect differs from the features provided for designing concrete syntax in AtoMPM.

Because arKitect doesn’t support this option, for this part of the project, I give a graphical

representation of each object with its corresponding image.

The third section of this report represents the operational semantics for the RPG. Like I

mentioned for the previous parts and also for this section, arKItect doesn’t support operation

semantics and transformations. For this part of the project, I used Python scripting which is an

additional feature of arKitect. With the use of these Python scripts, I managed to make the

operational semantics for Required parts (as mentioned in the MDE assignments) similar with

operations in metaDepth where no visual representation is available.

3

The fourth section will be reserved for my conclusion on this project, where I will also provide

some of the key advantages and disadvantages of arKItect in comparison with AtoMPM.

Abstract syntax

In this section I am going to discuss the abstract syntax of the RPG. Because arKItect lacks Class

Diagram models, I used the arKItect objects, attributes and flows to represent the abstract syntax.

First I begin by creating the objects with its attributes similar to the Classes from the abstract

syntax done in AtoMPM. The objects in arKItect consist of attributes of different types such as

Integer, Boolean, Enum, String and etc. There is also a special type of attribute called “Program”

that is used for writing Python Scripts that I will explain later in this report. In comparison with

the abstract syntax done in AtoMPM, arKitect doesn’t have constraint (for this part, I wrote

Python scripts that act like constraints similar to the constraints written in AtoMPM) and

cardinality fields.

Figure 1 Abstract syntax of the RPG in arKItect

4

To represent the associations (holds, part of, belongsTo, inheritance and etc.) and the inheritance,

I use the arKItect flows which are displayed in different colors. Worth mentioning is that in

comparison with AtoMPM, where we could define a class as abstract, this is not possible in

arKitect. Also instead of the actions field from the Class Diagram in AtoMPM, in arKItect there

is the option of triggering event (Python scripts) which I will explain later in this report.

Figure 2 Overview of the rule “CharacterClass” for the RPG in arKItect

From the picture above, we can see the rule (object) ”CharacterClass” with its attributes and

flows/associations that he can have. Later we deploy these objects in the Internal Block Diagram

and we create the connections between the objects. Interesting about arKItect is that we can

connect two objects only if they both have the same data flows/associations defined in the meta-

model (like in Figure2).

Figure 3 Selecting type of a flow between objects

5

When we want to add an attribute to an object, we can either select from the list of available

attributes that we made or we can define a new one, together with the type and the default value.

Figure 4 Adding an attribute to an object in arKItect

If we want to modify the objects attributes, we can check the properties panel and set the values

of the given attributes.

Figure 5 Properties of the selected object

The RPG made in arKItect (in accordance with the Class Diagram representation shown in

Figure1.) consists of one Scene “Azar’s Foreset”, one Character: Hero “Sepiroth” and one Item:

Weapon, which is the goal of the game. When the hero picks up the item the game finishes. The

Scenes (size: 3x2) is made of 5 Standard Tiles and 1 Obstacle Tile.

Concrete Syntax

Making the concrete syntax in arKItect is different from making it in AtoMPM. Because arKItect

doesn’t have a predefined model toolbar for creating the concrete syntax (like the icon instance

in AtoMPM), I created new rules/objects (different from the ones used in the Class Diagram

representation) and along with it a new hierarchical model. Inside the Scene rule, I defined the

other rules: Tile (Standard Tile), Obstacle Tile, Item (Key, Weapon and Potion) and Character

(Hero or Villain). This scenario also adds restrictions of creation objects that are not in that level

of hierarchy. For example, we cannot add another Scene object in the current Scene. Also if we

want to add a Hero or A Villain object, it will allow us to add it inside the Character object. So

6

for giving a visual representation of the objects, I uploaded their corresponding picture as a

foreground image. Later when we create the RPG model, we select the object with its visual

representation from the palette panel in arKItect, similar to the default Icons toolbar in AtoMPM.

Figure 6 Palette of the objects in arKItect

Important to mention is that, arKItect in comparison with AtoMPM, doesn’t have mapper and

parser fields so like in the case with choosing the category of the Standard Tile (where in

AtoMPM we could write code in the mapper to select the required picture with the selected

category), in arKItect that can only be done with Python script in a Program attribute.

Figure 7 RPG concrete syntax in arKItect

7

Operational Semantics and Constraints

As I mentioned in the Introduction section, operational semantics and transformation and not

supported in arKitect. However I managed to do required parts (as mentioned in the assignment

for the operational semantics) of the RPG through Python scripts. From what I’ve specified in

the above sections, arKitect has the option of adding an attribute of type ”Program”, where we

write the Python script which can be executed either by only clicking on the selected attribute or

as an event triggered by some actions that we perform on the object. Because arKitect limits the

selection of a triggering event to only one, some of the scripts have to be run manually (by

clicking on the selected attribute).

Figure 8 Example of a triggered events panel in the object Scene

Important to mention is that the output of the operational semantics cannot be shown visually in

arKitect. The final output is represented in textual form containing of steps similar with the

output from the tool “metaDepth”, which I will discuss further in this part.

When it comes to the constraints because arKItect lacks this option, all of the constraints are

written with Python scripts and executed either manually or triggered by event. Also I like to

point out that unlike in AtoMPM, where the abstract and concrete syntax are connected with the

final model and the operational semantics, in arKItect they are not connected. That’s why I had

to make some changes in the “RPG model” (adding some additional attributes, so that I can

make the model operational) in comparison with the abstract and concrete syntax that I’ve

discussed earlier in this report.

First, I am going to begin by explaining each of the constraints for the RGP, made in arKitect,

and then I am going to jump to the operational part of this project.

The constraint “hero count” (executed manually) appears in the Scene object, which goes into all

of the Characters objects and checks if their child (inside the Character object we add a child,

either a Hero or a Villain) is Hero and counts its appearance. If the counter for the Hero is bigger

the one, it gives a warning message that we should have only one Hero in the entire game. The

option of deleting the other Hero or types of objects or not allowing the user to add a Hero

character cannot be done as arKitect doesn’t have methods for such operations.

8

Figure 9 Constraint "hero count" and the output from its execution

The constraint “item_tile_check” is part of the Scene object (executed manually), which checks

is the item placed on a normal tile or on an Obstacle tile. It checks the “position” attribute of the

Items when performing the check. If there are no violations of the constraint no output message

is printed.

Figure 10 Constraint "item_tile_check" and its output

Next we have the “positiveX” and “positiveY” constraints (manually executed), which are part

of the Scene object and check if the values for the attributes x and y are positive values. The

object Scene has this two attributes x and y that we set when we set the size of the Scene.

Figure 11 Constraint "PositiveX"

9

The constraint “right_num_tiles” (executed manually), which is part of the Scene object, once

executed will count all the tiles (standard and obstacle tile) and check that number with the size

of the current Scene (x and y attributes). Depending on the result number it will output either the

number with the size is satisfied or add more tiles or not synchronized with the size of the Scene.

Figure 12 Constraint "right_num_tiles"

The program attribute “size” (executed on event “change attribute”), which is part of the Scene

object redraws the Scene object in the Internal Block Diagram depending on the attributes x and

y so it can fit all the tiles (similar with resizing the Scene in AtoMPM).

Figure 13 Program attribute "size"

The constraint “one item” (executed on event “add child”), which is part of the Item object,

checks if the Item object has more than one child (Weapon, Key or Potion). When adding a child

item object it immediately displays a warring message that only one child per Item Object is

allowed. The option of removing the newly added child Item object cannot be done in arKitect so

instead the user is warned in advance.

The “get all Tiles” program attribute (executed manually), which is part of Character, Standard

Tile, Obstacle Tile and Item object, returns the instances of all the Tile (Standard and Obstacle)

10

objects so later we can set the update the “position” attribute when either we connect tiles, place

characters or items on tiles.

Figure 14 Program attribute "get all Tiles"

The program attribute “update connections” (executed manually), which can be found in Tile

Objects, connects a give tile with its neighboring tiles. The script begins by collecting the values

for the attributes (top_, bottom_, left_ and right_ , where we write the name of the tile that we

want the current tile to connect to) then finds the stated tiles and it sets the name of the current

tile as its neighbor depending on the given side. For example, “StandardTile__1” has

“StandardTile__2” as right neighbor and when we execute the script, the attribute “left_” in

“StandardTile__2” will be set to “StandardTile__1”.

Figure 15 Program attribute "update connections"

The constraint “same type” (executed on event add new object), which is part of the Tile object,

checks if we add another object of type “Tile”. This constraint was made so that only one type of

the Tile object will exist per Scene. As we know till now, the Tile object has Standard tile as

child which can be Road, Grass and Concrete that we choose when we design the Scene.

The constraint “hero or villain” (executed on event add child) is part of the Character object, and

give us a warning message that the Character object can only have one child object, a Hero or a

Villain. The newly added object cannot be deleted so the user has to perform that action.

11

Figure 16 Constraint "hero or villain"

The Program attribute “set position” (executed manually) is part of the Character object and I

used it for setting the position of the character. Before we execute this script we decide on which

tile we are going to place the character (only on standard and not occupied tile) by running the

script ”get tiles” and then we set that tile as the attribute “position” of the character. After this we

run the “set position” attribute and it sets the tile where the hero is placed to is occupied

(Boolean type).

Figure 17 Program attribute "set position"

The “move” program attribute (executed manually) is part of the Character object and represents

the move and collect items operation for the character. Depending on the tile where the Character

is positioned, he can only move to its neighboring tile that are not occupied by other Character or

are not Obstacle tiles. This condition limit the choice of the character and by random selection a

tile is selected. After performing the move to the other tile, the value of the attribute

“IsOccupied” in the new tile is set to True and in the previous tile to False. Also when moving to

a new tile, an item check is performed so if the Character picks up an Item (the attribute “has

item” is set to the name of the item) and If the Item is a goal, the “collected goal” is set to True.

Figure 18 Output from the “move” attribute

12

Figure 19 Program attribute "move" part 1

Figure 20 Program attribute "move" part 2

13

Figure 21 Program attribute "move" part 3

Finally the program attribute “simulate” (executed manually), part of the Scene object is used

form running the simulation. This script executes the move operation for every character and

checks in each step weather some of the Character has collected the goal (collected goal = True).

If so it finishes the game.

Figure 22 Output from running the “simulate” attribute part 1

14

Figure 23 Output from running the “simulate” attribute part 2

Figure 24 Program attribute "simulate"

Comparison and Conclusion

The last part of this report is reserved for comparison between AtoMPM and arKitect and

summarization of the entire project. In the previous sections I also stated and discussed some of

the differences (encountered while working on this project) so in this part I am also going to add

e few more.

First thing that I noticed in arKItect is that its performance is very slow. It takes couple of

seconds or sometimes even more to load the entire project or while doing some modifications

when working on the project. This can be clearly seen when executing the “simulate” Program

attribute, where arKitect takes too much time to compute the output of the script (displaying Not

Responding on the icon).This is probably because every change made in project is immediately

uploaded to the server. Another thing that arKitect lacks is the support for “.png” files unlike

15

AtoMPM where this is possible. If we want to attach image to an object, first we have to upload

the image to the server and that set it either as foreground or as a background image. As I

mentioned previously in this report, arKItect doesn’t have support for constraints, operational

semantics and transformation and even the documentation [2] for the Python API doesn’t have

support methods. Other thing that needs to be mentioned is that when we open arKItect, we can

see all of our current projects and if a collaboration with another user was made, it will display if

the user is currently working on it and what changes were made in the project. This feature is not

available in AtoMPM. Finally, I also want to add that I’ve used the export to Word feature of

arKItect were a detailed representation of the objects was created.

It can be concluded from reading this project report and modeling the RPG that arKItect lacks

important characteristics that are necessary in the field of Model Driven Engineering where

AtoMPM is a very powerful tool in this field. Despite the disadvantages of arKItect, at the end,

the project achieved its goal. ArKItect remains an important software tool for designing large

scale complex systems that interact with the physical world. The power of arKItect comes from

its graphical and visual representation of hierarchical complex systems and also from the feature

of exporting complex system architecture into readable textual document.

References

1. http://www.k-inside.com/web/produits-et-services/produits/arkitect-designer/

arKItect home page

2. https://support.k-inside.com/display/ARKI22/arKItect+2.2.x+documentation+home

arKItect documentation

http://www.k-inside.com/web/produits-et-services/produits/arkitect-designer/
https://support.k-inside.com/display/ARKI22/arKItect+2.2.x+documentation+home

